

Background Research

Conditions Materials Must Withstand in Space [2][5]:

- Low pressure between 10^{-13} and 10^{-16} torr **o** increases evaporation
- Temperatures as low as -270.42 degrees Celsius
- Thermal radiation
- Gamma and Microwave radiation
- atomic oxygen and atomic hydrogen

NiTi 60 (Nickel-Titanium)[1][3]:

- A binary shape memory alloy (SMA) comprised of nickel and titanium
- High corrosion resistant
- Shape memory and superelastic properties can be neutralized with temperature manipulation
- Nonmagnetic
- Electrically conductive
- High hardness

Question:

• What is the optimal orientation of nickel-titanium 60 (NiTi 60) in cryo-vacuum bearings?

Previous Studies[3][4]:

- comparison the lubrication of NiTi 60 with the lubrication of 440C steel (a frequently used material) as "high-performance bearings"
- results revealed that Nitinol can be sufficiently lubricated just as steel can by withstanding its key properties

Figures 1& 2. NiTi60 samples.

Optimal Lubrication of Nickel-Titanium as a Mechanical Material for Spacecraft. Ashlynn Stennett and Adam Delong.

FAMU-FSU College of Engineering, Tallahassee, FL.

Methods	
Materials:	
• 3 samples of 440 C (Stainless Steel) and 3 samples of NiTi 60 (Figure 1&2.)	
• Polished to similar roughness: 0.191 microns	
• Similar hardness: 8 Gpa	1 ²
• 3 counter sample materials	um
• NiTi 60	in
 Si3N4 (silicon nitride) 440 C 	Area
Equipment:	
White light Interferometer	
• Make surface profiles and measure roughness	
• Multistage tribometer (Figure 3.)	
• Tests the friction wear rates of the samples	
• Glove Box	Fig
\circ Encases tribometer for a controlled dry nitrogen	<u>rigi</u> toto
atmosphere	
Test Conditions:	wca
• Perform stripe test on tribometer: the repetitive	
scratching of a surface of samples	
• We conduct 5 Incremental Test Cycles	
\circ 100 cycles: 5mm stroke length	
\circ 500 cycles: 4mm stroke length	
\circ 1000 cycles: 3mm stroke length	
\circ 5000 cycles: 2mm stroke length	
010000 cycles: 1mm stroke length	
• Speed of 2mm/sec	
• Force of 1N (newton)	

Figures 3. Multistage tribometer.

ure 4. Areas were collected from the 100, 1000 (1600 al), and 5000 (6600 total) incremental test cycles on the ar scars.

Figure 5. Sample 1 wear scar after 100 cycles against the NiTi 60 countersurface

Figure 6. Sample 2 wear scar after 100 cycles against the SiN countersurface.

Thank you to NASA for funding this project and supplying materials.

Conclusion

• NiTi 60 shows a constantly stable relationship after frequently scratching the surface

• Similar wear integrity is shared against NiTi 60, SiN, and 440 C counter samples

• In the further progression of this project, we intend to inspect the wear behavior against coated NiTi samples of DLC or MoS2 in relation to the coated 440 C samples

References

1. Della Corte, C., Stanford, M. K., & Jett, T. R. (2015). Rolling /(SIM) for Use as Resilient Corrosion Resistant Bearings. Tribology Letters, 57(3), 26. https://doi.org/10.1007/s11249-014-0456-3

2. Hansen, J. (2020, November 14). How cold is space exactly, and how do we measure it? The Canberra Times.

https://www.canberratimes.com.au/story/7012560/ho w-cold-is-space-exactly-and-how-do-we-measure-it/

3. Pepper, S. V., DellaCorte, C., & Glennon, G. (2010). Lubrication Nitinol of **60.**

https://ntrs.nasa.gov/citations/20100024329

4. Pepper, S. V., DellaCorte, C., Noebe, R. D., Hall, D. R., & Glennon, G. (2009, September 23). Nitinol 60 as a Material For Spacecraft Triboelements. 13th European Space Mechanisms and Tribology 2009. Symposium

https://ntrs.nasa.gov/citations/20090034488

5. Zaretsky, E. V. (1990). Liquid lubrication in space. https://ntrs.nasa.gov/citations/19900018747

Acknowledgments